วันเสาร์ที่ 17 ธันวาคม พ.ศ. 2554

ระบบจำนวนจริง


 ระบบจำนวนจริง
     จากแผนผังแสดงความสัมพันธ์ของจำนวนข้างต้น จะพบว่า ระบบจำนวนจริง จะประกอบไปด้วย
     1. จำนวนอตรรกยะ หมายถึง จำนวนที่ไม่สามารถเขียนให้อยู่ในรูปเศษส่วนของจำนวนเต็ม หรือทศนิยมซ้ำได้ ตัวอย่างเช่น √2 , √3, √5, -√2, - √3, -√5 หรือ ¶ ซึ่งมีค่า 3.14159265...
     2. จำนวนตรรกยะ หมายถึง จำนวนที่สามารถเขียนให้อยู่ในรูปเศษส่วนของจำนวนเต็มหรือทศนิยมซ้ำได้ ตัวอย่างเช่น
เขียนแทนด้วย 0.5000...
เขียนแทนด้วย 0.2000...
 ระบบจำนวนตรรกยะ
     จำนวนตรรกยะยังสามารถแบ่งเป็น 2 ประเภท คือ
     1. จำนวนตรรกยะที่ไม่ใช่จำนวนเต็ม หมายถึง จำนวนที่สามารถเขียนให้อยู่ในรูปเศษส่วนหรือทศนิยมซ้ำได้ แต่ไม่เป็นจำนวนเต็ม ตัวอย่างเช่น
     2. จำนวนเต็ม หมายถึง จำนวนที่เป็นสมาชิกของเซต I = {..., -4, -3, -2, -1, 0, 1, 2, 3, 4, ...} เมื่อกำหนดให้ I เป็นเซตของจำนวนเต็ม
 ระบบจำนวนเต็ม
     จำนวนเต็มยังสามารถแบ่งได้อีกเป็น 3 ประเภทด้วยกัน
1. จำนวนเต็มลบ หมายถึง จำนวนที่เป็นสมาชิกของเซต I - โดยที่
          I - = {..., -4, -3, -2, -1}
เมื่อ I - เป็นเซตของจำนวนเต็มลบ
2. จำนวนเต็มศูนย์ (0)
3. จำนวนเต็มบวก หมายถึง จำนวนที่เป็นสมาชิกของเซต I+ โดยที่
         I+ = {1, 2, 3, 4, ...}
เมื่อ I+ เป็นเซตของจำนวนเต็มบวก
         จำนวนเต็มบวก เรียกได้อีกอย่างว่า "จำนวนนับ" ซึ่งเขียนแทนเซตของจำนวนนับได้ด้วยสัญลักษณ์ N โดยที่
                           N = I+ = {1, 2, 3, 4, ...}
 ระบบจำนวนเชิงซ้อน
     นอกจากระบบจำนวนจริงที่กล่าวมาข้างต้นแล้ว ยังมีจำนวนอีกประเภทหนึ่ง ซึ่งได้จากการแก้สมการต่อไปนี้
x2 = -1∴ x = √-1 = i
x2 = -2∴ x = √-2 = √2 i
x2 = -3∴ x = √-3 = √3 i
     จะเห็นได้ว่า “ไม่สามารถจะหาจำนวนจริงใดที่ยกกำลังสองแล้วมีค่าเป็นลบ” เราเรียก √-1 หรือจำนวนอื่นๆ ในลักษณะนี้ว่า “จำนวนจินตภาพ”และเรียก i ว่า "หนึ่งหน่วยจินตภาพ" เขียนแทนด้วยสัญลักษณ์ i
     ยูเนียนของเซตจำนวนจริงกับเซตจำนวนจินตภาพ คือ " เซตจำนวนเชิงซ้อน " (Complex numbers)

 สมบัติการเ่ท่ากันของจำนวนจริง
     กำหนด a, b, c เป็นจำนวนจริงใดๆ
     1. สมบัติการสะท้อน a = a
     2. สมบัติการสมมาตร ถ้า a = b แล้ว b = a
     3. สมบัติการถ่ายทอด ถ้า a = b และ b = c แล้ว a = c
     4. สมบัติการบวกด้วยจำนวนที่เท่ากัน  ถ้า a = b แล้ว a + c = b + c
     5. สมบัติการคูณด้วยจำนวนที่เท่ากัน ถ้า a = b แล้ว ac = bc
    
 สมบัติการบวกในระบบจำนวนจริง
     กำหนด a, b, c เป็นจำนวนจริงใดๆ
    1. สมบัติปิดการบวก a + b เป็นจำนวนจริง
    2. สมบัติการสลับที่ของการบวก a + b = b + c
    3. สมบัติการเปลี่ยนกลุ่มการบวก a + ( b + c) = ( a + b ) + c
    4. เอกลักษณ์การบวก 0 + a = a = a + 0
    นั่นคือ ในระบบจำนวนจริงจะมี 0 เป็นเอกลักษณ์การบวก
    5. อินเวอร์สการบวก a + ( -a ) = 0 = ( -a ) + a
    นั่นคือ ในระบบจำนวนจริง จำนวน a จะมี -a เป็นอินเวอร์สของการบวก
 สมบัติการคูณในระบบจำนวนจริง
กำหนดให้ a, b, c, เป็นจำนวนจริงใดๆ
     1. สมบัติปิดการคูณ ab เป็นจำนวนจริง
     2. สมบัติการสลับที่ของการคูณ ab = ba
     3. สมบัติการเปลี่ยนกลุ่มของการคูณ a(bc) = (ab)c
     4. เอกลักษณ์การคูณ 1 · a = a = a · 1
    นั่นคือในระบบจำนวนจริง มี 1 เป็นเอกลักษณ์การคูณ
    5. อินเวอร์สการคูณ a · a-1 = 1 = a · a-1, a ≠ 0
    นั่นคือ ในระบบจำนวนจริง จำนวนจริง a จะมี  a-1 เป็นอินเวอร์สการคูณ ยกเว้น 0
     6. สมบัติการแจกแจง
               a( b + c ) = ab + ac
               ( b + c )a = ba + ca
     จากสมบัติของระบบจำนวนจริงที่ได้กล่าวไปแล้ว สามารถนำมาพิสูจน์เป็นทฤษฎีบทต่างๆ ได้ดังนี้
ทฤษฎีบทที่ 1กฎการตัดออกสำหรับการบวก
เมื่อ a, b, c เป็นจำนวนจริงใดๆ
ถ้า a + c = b + c แล้ว a = b
ถ้า a + b = a + c แล้ว b = c
ทฤษฎีบทที่ 2กฎการตัดออกสำหรับการคูณ
เมื่อ a, b, c เป็นจำนวนจริงใดๆ
ถ้า ac = bc และ c ≠ 0 แล้ว a = b
ถ้า ab = ac และ a ≠ 0 แล้ว b = c
ทฤษฎีบทที่ 3เมื่อ a เป็นจำนวนจริงใดๆ
a · 0 = 0
0 · a = 0
ทฤษฎีบทที่ 4เมื่อ a เป็นจำนวนจริงใดๆ
(-1)a = -a
a(-1) = -a
ทฤษฎีบทที่ 5เมื่อ a, b เป็นจำนวนจริงใดๆ
ถ้า ab = 0 แล้ว a = 0 หรือ b = 0
ทฤษฎีบทที่ 6เมื่อ a เป็นจำนวนจริงใดๆ
a(-b) = -ab
(-a)b = -ab
(-a)(-b) = ab
      เราสามารถนิยามการลบและการหารจำนวนจริงได้โดยอาศัยสมบัติของการบวกและการคูณใน
ระบบจำนวนจริงที่ได้กล่าวไปแล้วข้างต้น
• การลบจำนวนจริง
บทนิยามเมื่อ a, b เป็นจำนวนจริงใดๆ
a- b = a + (-b)
นั่นคือ a - b คือ ผลบวกของ a กับอินเวอร์สการบวกของ b
• การหารจำนวนจริง
บทนิยามเมื่อ a, b เป็นจำนวนจริงใดๆ เมื่อ b ≠ 0
= a(b-1)
นั่นคือคือ ผลคูณของ a กับอินเวอร์สการคูณของ b

ไม่มีความคิดเห็น:

แสดงความคิดเห็น